Abstract

〈101〉-oriented cylindrical single crystalline Fe samples with diameters of 100nm and heights of 1μm were implanted with 0.36±0.06at% helium throughout their gauge sections. Uniaxial deformation experiments revealed a 40% higher yield and ultimate strengths in tension and a 25% higher yield strength and flow stress at 10% plastic strain in compression for implanted samples compared with as-fabricated ones. Observed tension–compression asymmetry in implanted pillars was attributed to the non-planarity of screw dislocation cores and to twinning-antitwinning deformation typical of bcc metals and the interaction between dislocations and He bubbles. Compressive stress–strain data in both sets of samples had three distinct regimes: (1) elastic loading followed by (2) discrete strain bursts during plastic flow with significant hardening up to strains of 5%, and (3) “steady state” discrete plasticity characterized by nearly-constant average flow stress. Each regime is discussed and explained in terms of competition in the rates of dislocation multiplication and dislocation annihilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.