Abstract

The development of electrocatalyst with efficient and stability for water oxidation is the key to enhance the efficiency of water electrolysis. Interface engineering can modify the local electronic structure of active sites, which is one of the important strategy to enhance catalytic activity. Herein, we synthesized NiMoSx heterostructure nanorods by simple hydrothermal method. The self supporting electrode of NiMoSx heterostructure nanorods grown in situ on nickel foam can reduce the indirect contact resistance between the substrate and the catalyst, and promote the timely release of bubbles produced by the oxygen evolution reaction. The heterogeneous interface in NiMoSx can provide abundant electroactive centers and optimize the adsorption energy of active intermediates. NiMoSx heterostructure nanorods showed excellent oxygen evolution catalytic activity (η100 = 279 mV, η1000 = 436 mV, Tafel slope b = 72.3 mV dec−1) and more than 200 hours of sustainable durability in 1 M KOH. When NiMoSx heterostructure nanorods are used as anode materials for water electrolysis, the electrolytic cell could obtain 10 mA cm−2 at 1.48 V. The current research results not only show that NiMoSx nanostructure is an excellent oxygen evolution electrocatalyst, At the same time, it also provides a valuable interface regulation method for the design of high-performance heterostructure electrocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.