Abstract

In this paper, we show performance and reliability improvement of Ag- GeS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -based conductive bridge RAM (CBRAM) devices by addition of a 2-nm-thick HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> layer between the electrolyte and the W bottom electrode. Our optimized dual-layer electrolyte stack (2-nm HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -30-nm GeS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) leads to a resistance ratio (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OFF</sub> /R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ON</sub> ) higher than 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> and projected 10 years read disturb immunity at 0.04 V. The improved memory resistance ratio is explained by means of physical modeling. Using compact modeling and circuit level simulations, we show that our optimized CBRAM device, integrated in a 1T-2R architecture, fits well with the aggressive requirements of field programmable gate array-type reconfigurable applications. Nonvolatility, back-end-of-line compatibility, and 1.3-nA leakage current during continuous reverse read operation at 1 V are strong benefits demonstrated on our device for such applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call