Abstract

This study investigates the effects of hydrogen post-treatment on 3D NAND flash memory. Hydrogen post-treatment annealing (PTA) is suggested to passivate the defects in the tunneling oxide/poly-Si interface and inside the poly-Si channel. However, excess hydrogen PTA can release hydrogen atoms from the passivated defects, which may degrade device performance. Therefore, it is important to determine the appropriate PTA condition for optimization of the device performance. Three different conditions for hydrogen PTA, namely Reference, H, and H++, are applied to observe the effects on device performance. The activation energy () of the device parameters was extracted according to the hydrogen PTA condition to analyze the effects. The extracted is about 74 meV for Reference, 53 meV for H, and 58 meV for H++ conditions, with the best performance observed at the H condition. Optimal hydrogen PTA shows the best on-current (51% higher than Reference) and stable short-term retention (66% suppressed V T than Reference) in 9X stacked 3D NAND flash memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.