Abstract

Herein a hybrid catalyst consisting of "naked" Au-NPs in situ grown on graphene sheets is engineered, which exhibits a synergetic effect in mimicking peroxidase at its interface, although free Au-NPs or graphene alone has very little activity. What is more, one of the unique features of our synergetic catalyst is that its interface can be reversibly switched from "inactive" to "active" upon treatment with different ssDNA species in solution, thus providing a powerful and versatile basis for designing graphene/DNA-based label-free colorimetric biosensors. Compared with other signal transduction modes in traditional graphene/aptamer-based systems, our novel signaling strategy not only avoids any labeling or modification procedures but also reduces the background signal due to the "off-on" switching mode during the sensing. Furthermore, this facile and general approach can be applicable to the other extended graphene/aptamer-based systems for colorimetric detection of a wide range of analytes. We envision that the tunable graphene-based smart interface could find potential applications in the development of biocatalysis, bioassays, and smart material devices in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call