Abstract
We numerically investigate the spin glass energy interface problem in three dimensions. We analyze the energy cost of changing the overlap from -1 to +1 at one boundary of two coupled systems (in the other boundary the overlap is kept fixed to +1). We implement a parallel tempering algorithm that simulate finite temperature systems and work with both cubic lattices and parallelepiped with fixed aspect ratio. We find results consistent with a lower critical dimension $D_c=2.5$. The results show a good agreement with the mean field theory predictions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have