Abstract

The properties of nanometer-thick yttrium iron garnet (YIG) films are strongly influenced by interfaces. This work employs spectral ellipsometry (SE) and magneto-optic polar Kerr rotation (PKR) to characterize YIG films with thickness, t, from 6 nm to 30 nm grown on Gd3Ga5O12 (GGG) substrates oriented parallel to (111) plane. The films display a surface roughness of 0.35 nm or lower. The analysis of the SE data at the photon energies of 1 eV < E < 6.5 eV provided the t and permittivity values. The PKR at 1.3 eV < E < 4.5 eV is reasonably explained with the optical model for the YIG film/GGG substrate system. Even better agreement is achieved by assuming a 1.07-nm-thick layer sandwiched between YIG and GGG that has Fe3+ sublattice magnetization opposite to that in the YIG volume. This suggests the existence of antiferromagnetic coupling between the Gd3+ and tetrahedral Fe3+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call