Abstract

The description of the quality of a photon beam has usually been characterized by a single value such as the half-value layer, the effective attenuation coefficient, the percent depth dose, and most recently by the ionization ratio (IR). Although the IR is simple and easy to measure, it lacks sensitivity at photon energies above 10 MV. This paper describes a method based on dose perturbation at an interface and defines the forward dose perturbation factor (FDPF) as a measure of beam quality. Comparisons between the two methods are given for photon energies ranging from 60Co to 24 MV. The results show that the FDPF method is more sensitive to spectral changes at photon energies above 10 MV than the IR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.