Abstract

Fiber/matrix interface debond crack growth from a fiber break is defined as one of the key mechanisms of fatigue damage in unidirectional composites. Considering debond as an interface crack its growth in cyclic loading is analyzed utilizing a power law, where the debond growth rate is a power function of the change of the strain energy release rate in the cycle. To obtain values of two parameters in the power law cyclic loading of fragmented single fiber specimen is suggested. Measurements of the debond length increase with the number of load cycles in tension–tension fatigue are performed for glass fiber/epoxy single fiber composites. Analytical method in the steady-state growth region and FEM for short debonds are combined for calculating the strain energy release rate of the growing debond crack. Interface failure parameters in fatigue are determined by fitting the modeling and experimental results. The determined parameters for interface fatigue are validated at different stress levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.