Abstract
A model is developed to analyze the growth of a fiber/matrix debond along a broken fiber interface in a single-fiber composite subjected to tension-tension fatigue. The Paris law expressed in terms of debond growth and strain energy release rates is used. An analytical solution for the Mode II energy release rate G II is obtained for long debonds, where the interface crack growth is self-similar. For short debonds, the interface crack interacts with the fiber break, and therefore a FEM modeling in combination with the virtual crack closure technique was performed to calculate the increase in G II . Finally, the calculated G II dependences are summarized in simple expressions that are used to simulate the debond growth in fatigue. A parametric study of the effect of Paris law parameters on the debond growth is performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.