Abstract
The stability of polymeric micelles is a key property for anticancer drug delivery. In this study, a novel amphiphilic triblock copolymer, methoxy poly(ethylene glycol)-b-poly(allyl glycidyl ether)-b-poly(ε-caprolactone) (mPEG-b-PAGE-b-PCL), with different hydrophobic lengths was designed and synthesized using the combination of two successive ring-opening polymerizations. The products were characterized using 1H NMR and gel permeation chromatography (GPC). The triblock copolymers could self-assemble into micelles to encapsulate doxorubicin (DOX). The diameter of the DOX-loaded micelles increased from 63 to 92 nm with increasing PCL block length in the copolymer composition. The interface of the mPEG-b-PAGE-b-PCL micelles was crosslinked by a thiol-ene reaction with 1,4-butanedithiol. The stability, drug release and in vitro cytotoxicity of the DOX-loaded micelles were studied. The results showed that the DOX-loaded micelles could be effectively endocytosed by cancer cells and have good antitumor efficacy. In addition, the crosslinked micelles (CLMs) had better tumor accumulation than the noncrosslinked micelles (NCLMs) after intravenous injection using the lipophilic dye DiR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.