Abstract
A novel amphiphilic ABA-type triblock copolymer poly(ethylene glycol)-b-poly(ethanedithiol-alt-nitrobenzyl)-b-poly(ethylene glycol) (PEG-b-PEDNB-b-PEG) is successfully prepared by sequential thiol-acrylate Michael addition polymerization in one pot. PEG-b-PEDNB-b-PEG is designed to have light-cleavable o-nitrobenzyl linkages and acid-labile β-thiopropionate linkages positioned repeatedly in the main chain of the hydrophobic block. The light and pH dual degradation of PEG-b-PEDNB-b-PEG is traced by gel permeation chromatography (GPC). Such triblock copolymer can self-assemble into micelles, which can be used to encapsulate anticancer drug doxorubicin (DOX). Because of the different degradation chemistry of o-nitrobenzyl linkages and β-thiopropionate linkages, DOX can be released from the micelles by two different manners, i.e., light-induced rapid burst release and pH-induced slow sustained release. Confocal laser scanning microscopy (CLSM) results indicated that DOX-loaded micelles exhibited faster drug release in A549 cells after UV irradiation. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) results show that the DOX-loaded micelles under UV light degradation exhibit better anticancer activity against A549 cells than that of the nonirradiated ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.