Abstract

The formation of interfacial oxides during heat treatment of dielectric films on 4H-SiC has been studied. The 4H-SiC surface has been carefully prepared to create a clean and abrupt interface to Al2O3. An amorphous, 3 nm thick, Al2O3 film has been prepared on 4H-SiC by atomic layer deposition and rapid thermal annealing was then performed in N2O ambient at 700 °C and 1100 °C during 1 min. The samples were studied by time-of-flight medium energy ion scattering (ToF-MEIS), with sub-nanometer depth resolution and it is seen that, at both annealing temperatures, a thin SiOx (1 ⩽ x ⩽ 2) is formed at the interface. Our results further indicate that carbon remains in the silicon oxide in samples annealed at 700 °C. Additional electrical capacitance voltage measurements indicate that a large concentration of interface traps is formed at this temperature. After 1100 °C annealing, both MEIS and XRD measurements show that these features disappear, in accordance with electrical data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call