Abstract

The integrity of Al2O3(2.0nm)∕HfO2(2.5nm)∕SiO2(<1nm)∕Si(001) stacks after rapid thermal annealing at temperature up to 1025°C was investigated. The structures were prepared by atomic layer deposition and atomic transport was accessed by profiling all elements in the system with subnanometric depth resolution, using medium and low energy ion scattering and narrow resonant nuclear reaction profiling. Al migration toward the stack/Si interface, Al loss by desorption from the surface, and Hf transport across the Al2O3 film layer toward the outermost surface were observed. The loss of oxygen from the stack is also noticeable, most probably caused by compound dissociation and desorption of oxygen containing species. The possible detrimental effects on device electrical properties of the observed presence of Hf at the outermost surface of the dielectric stack and of Al at the dielectric/Si interface are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.