Abstract
Electrocatalytic N2 reduction reaction (NRR) under ambient condition is considered as an alternative and environmental-friendly technique to substitute the conventional process of Haber-Bosch for NH3 production. However, there are still hurdles for researchers to control the balance between N2 activation and competitive hydrogen evolution reaction (HER) to obtain high selectivity of NRR. Herein, we synthesized Pt/TiO2 and Pd/TiO2 hybrids by using laser ablation in liquid (LAL) technology combined with hydrothermal treatment and compared their activity and selectivity of N2 reduction. The results concluded that Pt/TiO2 exhibited a higher NH3 yield rate whereas Pd/TiO2 achieved a better FE for artificial N2 fixation, confirming that enhanced activity surely needs more electrons and protons to participate in the reaction, but the limited protons and electrons furnishing could restrain HER activity and improve selectivity of NRR. Comparing with Pt/TiO2, Pd/TiO2 hybrids could serve as a superior catalyst for keeping a balance relationship between HER and NRR to realize excellent selectivity and high yield rate simultaneously in an alkaline solution. Overall, this work will provide a significant practice to rational design electrocatalysts for NRR at ambient conditions and Pd-based materials might open an electrocatalyst paradigm to solve the global energy and ecological crisis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.