Abstract

Abstract The development of plant fibre composite is on the rise for a wide range of applications. Probably a single most important aspect with respect to the formulation of plant fibre composites with superior mechanical performance is the optimization of the interfacial bonding between the reinforcing plant fibre and polymer matrix. While the interface plays a pivotal role in determining the mechanical properties, e.g. transferring the stress and distributing the bond, it is among the least understood components of the composite. This paper presents an overview of the compatibility between the heterogeneous constituents of plant fibre composite, various modification approaches aiming at overcoming the incompatibility and refining the interfacial adhesion of the composite, interfacial bonding mechanisms, and the assessment of interface structure and bonding. It has been found that 1) the physical and chemical incompatibility between the fibre and matrix, leading to poor dispersion, weak interfacial adhesion and ultimately inferior composite quality, could be overcome through strategical modifications; 2) inter-diffusion, electrostatic adhesion, chemical reactions and mechanical interlocking are in general responsible for the interfacial bonding and adhesion of plant fibre composites; and 3) a thorough knowledge of structure-property relationship of the composite could be established by conducting a set of direct and indirect interfacial assessments. This paper finishes with some critical suggestions and future perspectives, underscoring the roles of composite material researchers and engineers for the further in-depth studies and up-scale commercialization of plant fibre composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.