Abstract

Post-growth rapid thermal annealing (RTA) has been used to investigate an interdiffusion and the structural change in an InGaAs dots-in-a-well (DWELL) structure grown by molecular beam epitaxy using an alternately supplying InAs and GaAs sources. In the case of the as-grown sample, which has a metastable quantum structure due to an intentional deficit of source materials, it is found that an InGaAs quantum well (QW) coexists with the premature quantum dots (QDs), and an intermediate layer exists between the QW and the QDs. Through the RTA process at 600 and 800°C for 30s, metastable structure changes into a normal DWELL structure composed of QDs and QW as a result of the intermixing of premature QDs and the intermediate layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.