Abstract

Thermoset latex systems represent an attractive approach to obtaining the high performance needed in many different kinds of industrial coatings, while satisfying the growing requirement for environmental friendliness. In these coatings in the dispersed state, the reactive groups are packaged inside of polymer particles. These latex particles deform as the coating dries to form a transparent binder phase. The useful properties of mechanical strength, as well as scrub and solvent resistance, develop over time. This paper focuses on the idea that to achieve the desired properties in a thermoset latex coating, one has to pay proper attention to the relative rates of polymer diffusion and crosslinking in the coating. Strength in these films develops as a consequence of chains that connect crosslink points on opposite sides of interface formed between adjacent particles in the film. Thus polymer diffusion must precede extensive bond formation created by the crosslinking chemistry. This paper reviews fundamental concepts and then describes experiments in three separate systems. These experiments show that the formulator has three main strategies to vary the relative rates of these processes: 1. Catalyst strength and concentration will affect the reaction rate. 2. Polymer chain length will affect the polymer diffusion rate. 3. Temperature changes will normally have a larger affect on the polymer diffusion rate than on the crosslinking reaction rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.