Abstract

Theoretical work on dispersion in single-mode fibers sometimes uses the assumption that waveguide dispersion D(w) and material dispersion D(m) are separate effects that contribute additively to the total amount of dispersion D(m+w). Using Gloge's LP-mode approximation we compute the dispersion of the LP(0l) (HE(11)) mode by solving the eigenvalue equation taking dispersion of core and cladding materials into account. The dispersion of the LP(01) mode is computed by numerical differentiation of the solution of the eigenvalue equation. The difference D(m+w) - D(w) is compared to waveguide dispersion D(w), which is computed by ignoring the dispersive properties of the core and cladding materials. We find large percentage deviations between D(m+w) - D(m) and D(w). The assumption of additivity of material and waveguide dispersion is thus not quite correct. However, because of the small contribution of waveguide dispersion to the total dispersion of the LP(01) mode, even a large percentage error in the waveguide dispersion has little influence on the over-all dispersion of the LP(01) mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call