Abstract
Abstract SST predictions are usually issued in terms of anomalies and standardized anomalies relative to a 30-yr normal: climatological mean (CM) and standard deviation (SD). The World Meteorological Organization (WMO) suggests updating the 30-yr normal every 10 yr. In complying with the WMO's suggestion, a new 30-yr normal for the 1971–2000 base period is constructed. To put the new 30-yr normal in historical perspective, all the 30-yr normals since 1871 are investigated, starting from the beginning of each decade (1871–1900, 1881–1910, … , 1971–2000). Using the extended reconstructed sea surface temperature (ERSST) on a 2° grid for 1854–2000 and the Hadley Centre Sea Ice and SST dataset (HadISST) on a 1° grid for 1870–1999, eleven 30-yr normals are calculated, and the interdecadal changes of seasonal CM, seasonal SD, and seasonal persistence (P) are discussed. The interdecadal changes of seasonal CM are prominent (0.3°–0.6°) in the tropical Indian Ocean, the midlatitude North Pacific, the midlatitude North Atlantic, most of the South Atlantic, and the sub-Antarctic front. Four SST indices are used to represent the key regions of the interdecadal changes: the Indian Ocean (“INDIAN”; 10°S–25°N, 45°–100°E), the Pacific decadal oscillation (PDO; 35°–45°N, 160°E–160°W), the North Atlantic Oscillation (NAO; 40°–60°N, 20°–60°W), and the South Atlantic (SATL; 22°S–2°N, 35°W–10°E). Both INDIAN and SATL show a warming trend that is consistent between ERSST and HadISST. Both PDO and NAO show a multidecadal oscillation that is consistent between ERSST and HadISST except that HadISST is biased toward warm in summer and cold in winter relative to ERSST. The interdecadal changes in Niño-3 (5°S–5°N, 90°–150°W) are small (0.2°) and are inconsistent between ERSST and HadISST. The seasonal SD is prominent in the eastern equatorial Pacific, the North Pacific, and North Atlantic. The seasonal SD in Niño-3 varies interdecadally: intermediate during 1885–1910, small during 1910–65, and large during 1965–2000. These interdecadal changes of ENSO variance are further verified by the Darwin sea level pressure. The seasonality of ENSO variance (smallest in spring and largest in winter) also varies interdecadally: moderate during 1885–1910, weak during 1910–65, and strong during 1965–2000. The interdecadal changes of the seasonal SD of other indices are weak and cannot be determined well by the datasets. The seasonal P, measured by the autocorrelation of seasonal anomalies at a two-season lag, is largest in the eastern equatorial Pacific, the tropical Indian, and the tropical North and South Atlantic Oceans. It is also seasonally dependent. The “spring barrier” of P in Niño-3 (largest in summer and smallest in winter) varies interdecadally: relatively weak during 1885–1910, moderate during 1910–55, strong during 1955–75, and moderate during 1975–2000. The interdecadal changes of SD and P not only have important implications for SST forecasts but also have significant scientific values to be explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.