Abstract

The immunoglobulin heavy chain binding protein BiP/GRP78 is post-translationally modified by phosphorylation and ADP ribosylation. In cells induced to synthesize higher levels of BiP, either due to the accumulation of nontransported proteins or to glucose starvation, both BiP phosphorylation and ADP ribosylation are reduced. BiP bound to other proteins is unmodified, suggesting that both phosphorylation and ADP ribosylation are restricted to the unbound BiP pool. In the present study, both modifications were further characterized in terms of their stability, the pool of BiP that harbored these modifications, and the relationship between the modified and unmodified forms of BiP. While levels of BiP synthesis vary according to the physiological state of a cell, we found that both induced and uninduced cells contain similar amounts of free BiP. However, free BiP in uninduced cells was found primarily in an aggregated state, whereas in cells that accumulate nontransported proteins, it was predominantly monomeric. Both phosphorylation and ADP ribosylation were restricted to the aggregated form of free BiP. These post-translational modifications occurred upon release of BiP from associated proteins, and could be reversed upon induction of BiP synthesis. Therefore, BiP exists either (1) complexed to other proteins, (2) as a free unmodified monomer, or (3) as free modified aggregates. Our data suggest that BiP can be interconverted from one state to another, and that the various forms are functionally distinct.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.