Abstract

Developing porous carbon-based non-precious-metal catalysts for an oxygen reduction reaction (ORR) is a suitable approach to significantly reduce the costs of fuel cells or metal-air batteries. Herein, interconnected hierarchically porous carbon nanofibers simultaneously doped with nitrogen and iron (HP-Fe-N/CNFs) were fabricated by facile pyrolysis of polypyrrole-coated electrospun polystyrene/FeCl3 fibers. The obtained carbon nanofibers have a high specific surface area (569.6 m2/g) and large pore volume (1.00 cm3/ g) as well as effective doping of N and Fe. Benefiting from the improved mass transfer and utilization of active sites attributed to interconnected hierarchical porous structures, HP-Fe-N/CNFs display excellent ORR catalytic activity in alkaline media, with a comparable onset potential and half-wave potential but superior selectivity, stability, and tolerance against methanol to commercial 30 wt % Pt/C. Particularly, when applied in an assembled Zn-air battery, HP-Fe-N/CNFs outperform 30 wt % Pt/C in power density and long-term stability, explicitly showing their promising practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.