Abstract

The exploration and rational design of cost-effective, highly active, and durable catalysts for oxygen electrochemical reaction is crucial to actualize the prospective technologies such as metal–air batteries and fuel cells. Herein manganese cobalt oxide nanoparticles anchored on carbon nanofibers and wrapped in a nitrogen-doped carbon shell (MCO/CNFs@NC) is successfully prepared. Benefiting from the synergistic effect between the core nanoparticles and nitrogen-doped carbon shell, MCO/CNFs@NC catalyst exhibits oxygen reduction reaction (ORR) activity with comparable onset potential (1.00 V vs RHE) and half-wave potential (0.76 V vs RHE) which is only about 40 mV lower than that of the state of art Pt/C catalyst. Furthermore, the MCO/CNFs@NC catalyst exceeds the Pt/C catalyst by a great margin in terms of stability in alkaline media. Additionally, MCO/CNFs@NC catalyst is strongly tolerant to methanol crossover, promising its applicability as cathode catalyst in alcohol fuel cells. Moreover, MCO/CNFs@NC catalyst exhibits the oxygen evolution reaction (OER) activity with low overpotential of 0.41 V at the current density of 10 mA cm–2 and ORR/OER potential gap (ΔE) as low as 0.88 V, suggesting its strong bifunctionality. The Zn–air battery based on MCO/CNFs@NC catalyst is found to deliver a specific capacity of 695 mA h g–1Zn and an energy density of 778 W h kg–1Zn at a current density of 20 mA cm–2. The mechanically rechargeable Zn–air battery based on MCO/CNFs@NC catalyst is also found to function continually by only reloading the consumed Zn anode and electrolyte. Furthermore, the electrically rechargeable battery based on MCO/CNFs@NC catalyst is found to function for more than 220 cycles with negligible loss of voltaic efficiency. Moreover, MCO/CNFs@NC is found to display a supercapacitive nature with a good discharge capacity of 478 F g–1 at a discharge current density of 1 A g–1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.