Abstract

The objective of this paper is to assess the accuracy of the Semi-Analytical CloUd Retrieval Algorithm (SACURA) that retrieves cloud-top heights (CTHs) using hyperspectral SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard Environmental Satellite measurements for overcast single-layer cloud fields. Intercomparisons with ground-based 35-GHz millimeter wave cloud radar CTHs were performed for 14 dates during 2003-2007 at the U.S. Atmospheric Radiation Measurement (ARM) program Southern Great Plains site (36.6deg N, 97.5deg W). In addition, for some of these dates, European Space Agency MEdium Resolution Imaging Spectrometer (MERIS) and the NASA-TERRA Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure retrievals were also collected, transformed into CTHs using nearby ARM radiosonde profiles, and compared with the SACURA SCIAMACHY and radar retrievals. The accuracy of the SACURA-SCIAMACHY CTH retrievals is better than 0.34 km for low-level clouds and 2.22 km for high-level clouds with an underestimate in CTH on average for all clouds. The average bias in SCIAMACHY CTHs was about 0.07 km for low clouds and about 0.5 km for high-level clouds. Both MODIS and MERIS slightly overestimated the CTHs of low-level clouds by 300 m, with an uncertainty better than 1 km. However, although MODIS accuracy for high-level clouds is close to SCIAMACHY, MERIS CTHs were significantly underestimated for these fairly optically thick cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call