Abstract

Thin sections and freeze-fracture replicas of the water-blood barrier in the gill lamellae of adult lampreys (Geotria australis, Lampetra fluviatilis) demonstrate that the occluding junctions between epithelial pavement cells differ markedly from those between “endothelial” pillar cells in the structure and arrangement of their strands. The zonulae occludentes between pavement cells typically consist of complex networks of 4–6 strands, the mean number of which undergoes a small but significant decline when the animal is acclimated to seawater. In comparison, the occluding junctions between pillar cells are less elaborate and may represent maculae or fasciae, rather than zonulae occludentes. They do not apparently undergo a change when the animal enters saltwater. The results indicate that the main part of the paracellular diffusion barrier to proteins and ions is located in the epithelium rather than the endothelium. Communicating (gap) junctions are present between adjacent pavement cells, between pavement and basal cells and between pillar cells. These findings suggest that the epithelial cells and the pillar cells in the water-blood barrier of lampreys both form ‘functional syncytia’. The results are discussed in the context of ion-transporting epithelia in other aquatic vertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.