Abstract

Thin sections and freeze-fracture replicas have been used to study the structure of the zonulae occludentes of the branchial chloride cells in young adults of the anadromous lamprey Geotria australis, caught during their downstream migration to the sea and after acclimation to full-strength seawater (35‰). The chloride cells in the epithelium of the gill filaments of both freshwater- and seawater-acclimated animals form extensive multicellular complexes. In freshwater animals, the majority of chloride cells (64%) are covered by pavement cells and are thus not exposed to the external environment. Most of the other chloride cells are separated from each other by pavement cells or their processes. The zonulae occludentes between chloride cells and pavement cells and between adjacent chloride cells are extensive and characterised by a network of 4 (range 3–7) superimposed strands. In seawater-acclimated animals, the pavement cells cover only 30% of the chloride cells and their processes no longer occur between chloride cells. Whereas the zonulae occludentes between chloride cells and pavement cells are still extensive, those between chloride cells are shallow and comprise only a single strand or two parallel strands. The zonulae occludentes between the chloride cells of lampreys acclimated to seawater are similar to those in the gills of teleosts in seawater, and are thus considered to be leaky and to provide a low-resistance paracellular pathway for the passive transepithelial movement of Na+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call