Abstract

Abstract The present study investigates the transition from mixed Rossby–gravity (MRG) waves to tropical depression (TD)-type disturbances and its interannual variations over the western North Pacific (WNP), using ECMWF high-resolution data for the years of 1980–2001. As the equatorially trapped MRG waves propagate westward into the WNP, the MRG waves transit to TD-type disturbances because of background flow change. Interannual variations in the transition of MRG waves are related to monsoon circulation change in response to tropical convective heating over the warm pool (WP) region. When the WP is in a warm state, convective heating is enhanced in the western part of the WNP and the monsoon trough retreats westward, which induces a westward shift of the wave transition zone. In contrast, when the WP is in a relatively cold state, the eastward penetration of convection and monsoon trough shifts the wave transition to the eastern part of the WNP. The zonal wind convergence and shear in the monsoon trough region provide a favorable condition for MRG waves to asymptote to Rossby waves. The asymmetric basic flow contributes to MRG waves moving off the equator toward the northwest. The northeast–southwest-oriented axis of TD-type disturbances in collaboration with the monsoonal environment is favorable for the conversion of eddy kinetic energy from the mean flow. The intensification of the amplitude and shortening of the wavelength during wave transition, to a certain extent, is associated with tropical cyclogenesis over the WNP. Therefore, interannual variations in the longitudinal location of tropical cyclone formation may be interpreted partly by displacement of the wave transition zone. Moreover, this phenomenon of cyclogenesis induced by the wave transition is more common during the cold years in which the monsoon trough penetrates eastward and equatorward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.