Abstract

Abstract During early boreal winter, the extra-tropical atmospheric circulation is influenced by Rossby waves propagating from the Indian Ocean towards the North Atlantic-European (NAE) regions, resulting in a North Atlantic Oscillation (NAO)-like pattern. The mechanisms driving these teleconnections are not well understood and are crucial for improving model skills. This study investigates these mechanisms using the ERA5 dataset and tests the predictive capabilities of the ECMWF-SEAS5 hindcast, exploring potential reasons for a weak model response. Linear regression methods are employed to examine the extra-tropical links with the Indian Ocean dipole (IOD), both in isolation and in combination with the El Niño-Southern Oscillation (ENSO). Our findings demonstrate a connection between October IOD sea surface temperature anomalies and December Indian Ocean precipitation patterns. Furthermore, a correlation between the October IOD and December NAO time series suggests a link between the IOD and NAE circulation. The early winter European response to a positive IOD is characterized by a north-south precipitation dipole and a large positive surface air temperature anomaly. Positive feedback from transient eddy forcing reinforces the wavenumber-3-like propagation across extra-tropical regions, with ENSO playing a minor role compared to the IOD. This phenomenon is particularly evident in regions such as the North Pacific and North Atlantic, where wave energy propagation is intensified. Although SEAS5 replicates the NAO response, its magnitude is significantly weaker. The model struggles to simulate the delayed rainfall dipole response to the IOD accurately and shows structural discrepancies compared to reanalysis data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.