Abstract
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy field and mean flow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean flow to the eddy field in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy field and mean flow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they flank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean flow to the eddy field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have