Abstract

Abstract. The midsummer drought (MSD) in Central America is characterised in order to create annual indexes representing the timing of its phases (start, minimum and end), and other features relevant for MSD forecasting such as the intensity and the magnitude. The MSD intensity is defined as the minimum rainfall detected during the MSD, meanwhile the magnitude is the total precipitation divided by the total days between the start and end of the MSD. It is shown that the MSD extends along the Pacific coast, however, a similar MSD structure was detected also in two stations in the Caribbean side of Central America, located in Nicaragua. The MSD intensity and magnitude show a negative relationship with Niño 3.4 and a positive relationship with the Caribbean low-level jet (CLLJ) index, however for the Caribbean stations the results were not statistically significant, which is indicating that other processes might be modulating the precipitation during the MSD over the Caribbean coast. On the other hand, the temporal variables (start, minimum and end) show low and no significant correlations with the same indexes.The results from canonical correlation analysis (CCA) show good performance to study the MSD intensity and magnitude, however, for the temporal indexes the performance is not satisfactory due to the low skill to predict the MSD phases. Moreover, we find that CCA shows potential predictability of the MSD intensity and magnitude using sea surface temperatures (SST) with leading times of up to 3 months. Using CCA as diagnostic tool it is found that during June, an SST dipole pattern upon the neighbouring waters to Central America is the main variability mode controlling the inter-annual variability of the MSD features. However, there is also evidence that the regional waters are playing an important role in the annual modulation of the MSD features. The waters in the PDO vicinity might be also controlling the rainfall during the MSD, however, exerting an opposite effect at the north and south regions of Central America.

Highlights

  • The geographical features of Central America imprint the characteristics of the regional climate and weather at the isthmus

  • The start of the midsummer drought (MSD) is detected by 20 June, the minimum is reached by July and the end by August, at the north the start is observed by 22 June, the minimum by 24 July and the end around 24 August

  • This algorithm clearly captures the development of the MSD over the Pacific, and a similar MSD-like structure in two stations located in the Caribbean coast

Read more

Summary

Introduction

The geographical features of Central America imprint the characteristics of the regional climate and weather at the isthmus. The region is conformed by a large and high mountain system surrounded by the Pacific and Atlantic oceans, which induces the maritime climate conditions governing in the region (Taylor and Alfaro, 2005). The annual rainfall cycle for the entire region has already been well documented for Central America (Alfaro, 2002), and for the Eastern Tropical Pacific (ETP, Magaña et al, 1999; Amador et al, 2006). In the Pacific region the annual precipitation cycle exhibits a bimodal behaviour (Magaña et al, 1999; Taylor and Alfaro, 2005; Amador et al, 2006). The first precipitation maximum occurs during May– June when the nearby ocean waters have warmed to around

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call