Abstract

The Caribbean seasonal rainfall cycle and its characteristics are heavily relied upon by the region’s inhabitants for their socioeconomic needs; the prediction of its variability would be valuable to society. An important way to understand the predictability of the Caribbean rainfall cycle is to study its interannual variability. Previous studies vary as to how and what large-scale climate driver(s) affect the interannual variability of rainfall and its associated dynamical mechanisms in the Caribbean. To address this, this study investigates wet and dry Caribbean early-rainy seasons (ERS; mid-April to mid-June) and late-rainy seasons (LRS; late August to mid-November) by conducting the following: (1) a spatial composite of rainfall from 34 Caribbean rainfall stations using daily data; and, (2) spatial composites of sea-surface temperature, sea-level pressure, and mean flow moisture convergence and transports. The ERS and LRS are impacted in distinctly different ways by two different, and largely independent, dominant large-scale phenomena: the North Atlantic Oscillation (NAO) and the El Niño-Southern Oscillation (ENSO), respectively. Dry ERS years are associated with a persistent dipole of cold and warm SSTs over the Caribbean Sea and Gulf of Mexico, respectively, that were caused by a preceding positive NAO state. This setting involves a wind-evaporation-SST (WES) feedback expressed in enhanced trade winds and consequently, moisture transport divergence over all of the Caribbean, except in portions of the NW Caribbean in May. A contribution from the preceding winter cold ENSO event is also discernible during dry ERS years. Dry LRS years are due to the summertime onset of an El Niño event, developing an inter-basin SLP pattern that fluxes moisture out of the Caribbean, except in portions of the NW Caribbean in November. Both large-scale climate drivers would have the opposite effect during their opposite phases leading to wet years for both seasons. The two rainy seasons are independent because the main drivers of their variability are independent. This has implications for prediction.

Highlights

  • Understanding Caribbean mean rainfall and its variability is crucial for enhancing predictability of the rainfall cycle and understanding future projections of the rainfall cycle, given the regions’ high-vulnerability to climate variability and change (Taylor et al 2012)

  • The differences seen between the NW Caribbean and the rest of the Caribbean, and the large rainfall anomalies in the Central and Lesser Antilles hint that the set of dynamical processes that correspond to each sub-region are being affected differently than each other

  • This study finds the year-to-year variabilities of the early-rainy seasons (ERS) and late-rainy seasons (LRS) are relatively uniform across the Caribbean, with exception in the NW Caribbean

Read more

Summary

Introduction

Understanding Caribbean mean rainfall and its variability is crucial for enhancing predictability of the rainfall cycle and understanding future projections of the rainfall cycle, given the regions’ high-vulnerability to climate variability and change (Taylor et al 2012). How stakeholders in the Caribbean, like the agricultural community, receive information about rainfall and its characteristics are through their local weather service or climate services (Vaughan and Dessai 2014), who rely on the broader scientific understanding of the rainfall cycle for their forecasts. Previous work (Martinez et al 2019, hereafter M19) described regional variations of the Caribbean climatological rainfall cycle at a high temporal resolution, analyzed the regional climatological moisture budget, and addressed the dynamical processes associated with the annual march of the hydrological cycle. As described in M19, this entire rainy interval is characterized by three seasonal components:

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call