Abstract

Timely and accurate acquisition of spatial distribution and changes in cropland is of significant importance for food security and ecological preservation. Most studies that monitor long-term changes in cropland tend to overlook the rationality in the process of cropland evolution, and there are conflicts between the interannual cropland data, so they cannot be used to analyze land use change. This study focuses on the rationality of annual identification results for cropland, considering the long-term evolution and short-term variations influenced by natural environmental changes and human activities. An approach for annual monitoring of cropland based on long time series and deep learning is also proposed. We acquired imagery related to cropland’s vegetation lush period (VLP) and vegetation differential period (VDP) from Landsat images on the Google Earth Engine (GEE) platform and used the ResUNet-a structural model for training. Finally, a long-time-series cropland correction algorithm based on LandTrendr is introduced, and interannual cropland maps of Guangdong Province from 1991 to 2020 were generated. Evaluating the cropland monitoring results in Guangdong Province every five years, we found an overall accuracy of 0.91–0.93 and a kappa coefficient of 0.80–0.83. Our results demonstrate good consistency with agricultural statistical data. Over the past 30 years, the total cropland area in Guangdong Province has undergone three phases: a decrease, significant decrease, and stabilization. Significant regional variations have also been observed. Our approach can be applied to long-time-series interannual cropland monitoring in the southern regions of China, providing valuable data support for the further implementation of cropland protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.