Abstract

Forest fires are major disturbances in forest ecosystems. The rapid detection of the spatial and temporal characteristics of fires is essential for formulating targeted post-fire vegetation restoration measures and assessing fire-induced carbon emissions. We propose an accurate and efficient framework for extracting the spatiotemporal characteristics of fires using vegetation change tracker (VCT) products and the Google Earth Engine (GEE) platform. The VCT was used to extract areas of persistent forest and forest disturbance patches from Landsat images of Xichang and Muli, Liangshan prefecture, Sichuan province in southwestern China and Huma, Heilongjiang province, in northeastern China. All available Landsat images in the GEE platform in a year were normalized using the VCT-derived persisting forest mask to derive three standardized vegetation indices (normalized burn ratio (NBRr), normalized difference moisture index (NDMIr), and normalized difference vegetation index (NDVIr)). Historical forest disturbance events in Xichang were used to train two decision trees using the C4.5 data mining tool. The differenced NBRr, NDMIr, and NDVIr (dNBRr, dNDMIr, and dNDVIr) were obtained by calculating the difference in the index values between two temporally adjacent images. The occurrence time of disturbance events were extracted using the thresholds identified by decision tree 1. The use of all available images in GEE narrowed the disturbance occurrence time down to 16 days. This period was extended if images were not available or had cloud cover. Fire disturbances were distinguished from other disturbances by comparing the dNBRr, dNDMIr, and dNDVIr values with the thresholds identified by decision tree 2. The results showed that the proposed framework performed well in three study areas. The temporal accuracy for detecting disturbances in the three areas was 94.33%, 90.33%, and 89.67%, the classification accuracy of fire and non-fire disturbances was 85.33%, 89.67%, and 83.67%, and the Kappa coefficients were 0.71, 0.74, and 0.67, respectively. The proposed framework enables the efficient and rapid extraction of the spatiotemporal characteristics of forest fire disturbances using frequent Landsat time-series data, GEE, and VCT products. The results can be used in forest fire disturbance databases and to implement targeted post-disturbance vegetation restoration practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call