Abstract

The seasonal and interannual variation in the partial pressure of carbon dioxide in water [pCO2(water)] and air-water CO2 exchange in the Mahanadi estuary situated on the east coast of India was studied between March 2013 and March 2021. The principal aim of the study was to analyze the spatiotemporal variability and future trend of pCO2 and air-water CO2 fluxes along with the related carbonate chemistry parameters like water temperature, pH, salinity, nutrients, and totalalkalinity, over 9 years. The seasonal CO2 flux over nine years was also calculated using five worldwide accepted equations. The seasonal map of pCO2(water) followed a general trend of being high in monsoon (2628 ± 3484 μatm) associated with high river inflow and low during pre-monsoon (445.6 ± 270.0 μatm). High pCO2 in water compared to the atmosphere (average 407.6-409.4 μatm) was observed in the estuary throughout the sampling period. The CO2 efflux computed using different gas transfer velocity formulas was also consistent with pCO2 water acquiring the peak during monsoon in the Mahanadi estuary (6033 ± 9478 μmol m-2 h-1) and trough during pre-monsoon (21.66± 187.2 μmol m-2 h-1). The estuary acted as a net source of CO2 throughout the study period, with significant seasonality in the flux magnitudes. However, CO2 sequestration via photosynthesis by phytoplankton resulted in lower emission rates toward the atmosphere in summer. This study uses the autoregressive integrated moving average (ARIMA) model to forecast pCO2(water) for the future. Using measured and predicted values, our work demonstrated that pCO2(water) has an upward trend in the Mahanadi estuary. Our results demonstrate that long-term observations from estuaries should be prioritized to upscale the global carbon budget.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.