Abstract
Abstract This paper extended the concept of the technique for order preference by similarity to ideal solution (TOPSIS) to develop a methodology for solving multi-level non-linear multi-objective decision-making (MLN-MODM) problems of maximization-type. Also, two new interactive algorithms are presented for the proposed TOPSIS approach for solving these types of mathematical programming problems. The first proposed interactive TOPSIS algorithm includes the membership functions of the decision variables for each level except the lower level of the multi-level problem. These satisfactory decisions are evaluated separately by solving the corresponding single-level MODM problems. The second proposed interactive TOPSIS algorithm lexicographically solves the MODM problems of the MLN-MOLP problem by taking into consideration the decisions of the MODM problems for the upper levels. To demonstrate the proposed algorithms, a numerical example is solved and compared the solutions of proposed algorithms with the solution of the interactive algorithm of Osman et al. (2003) [4] . Also, an example of an application is presented to clarify the applicability of the proposed TOPSIS algorithms in solving real world multi-level multi-objective decision-making problems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have