Abstract
Specular surfaces, like water surfaces, create caustics by focusing the light being refracted or reflected. These caustics are very important for scene realism, but also challenging to render: to compute them, we need to find the exact path connecting two points through a specular reflective or refractive surface. This requires finding the roots of a complicated function on the surface. Manifold-Exploration methods find these roots using the Newton-Raphson method, but this involves computing path derivatives at each step, which can be challenging. We show that these roots lie on a curve on the surface, which reduces the dimensionality of the search. This dimension reduction greatly improves the search, allowing for interactive rendering of caustics. It also makes implementation easier, as we do not need to compute path derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Computer Graphics and Interactive Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.