Abstract

This paper introduces a Markov model for evolutionary algorithms (EAs) that is based on interactions among individuals in the population. This interactive Markov model has the potential to provide tractable models for optimization problems of realistic size. We propose two simple discrete optimization search strategies with population-proportion-based selection and a modified mutation operator. The probability of selection is linearly proportional to the number of individuals at each point of the search space. The mutation operator randomly modifies an entire individual rather than a single decision variable. We exactly model these optimization search strategies with interactive Markov models. We present simulation results to confirm the interactive Markov model theory. We show that genetic algorithms and biogeography-based optimization perform better with the addition of population-proportion-based selection on a set of real-world benchmarks. We note that many other EAs, both new and old, might be able to be improved with this addition, or modeled with this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.