Abstract
Real world optimization problems are often too complex to be solved through analytic means. Evolutionary algorithms are a class of algorithms that borrow paradigms from nature to address them. These are stochastic methods of optimization that maintain a population of individual solutions, which correspond to points in the search space of the problem. These algorithms have been immensely popular as they are derivativefree techniques, are not as prone to getting trapped in local minima, and can be tailored specifically to suit any given problem. The performance of evolutionary algorithms can be improved further by adding a local search component to them. The Nelder-Mead simplex algorithm (Nelder & Mead, 1965) is a simple local search algorithm that has been routinely applied to improve the search process in evolutionary algorithms, and such a strategy has met with great success. In this article, we provide an overview of the various strategies that have been adopted to hybridize two wellknown evolutionary algorithms - genetic algorithms (GA) and particle swarm optimization (PSO).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.