Abstract

Pseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, the interactions between pure cultures of P. entomophila 23S and Cmm were investigated. First, the population dynamics of each bacterium during the interaction was determined using the selective media. Second, the amount of anti-Cmm compound produced by P. entomophila 23S in the presence of Cmm was quantified using HPLC. Lastly, a label-free shotgun proteomics study of P. entomophila 23S, Cmm, and a co-culture was conducted to understand the effects of the interaction of each bacterium at the proteomic level. Compared with the pure culture grown, the total number of proteins decreased in the interaction for both bacteria. P. entomophila 23S secreted stress-related proteins, such as chaperonins, peptidases, ABC-transporters and elongation factors. The bacterium also produced more proteins related with purine, pyrimidine, carbon and nitrogen metabolisms in the presence of Cmm. The population enumeration study revealed that the Cmm population declined dramatically during the interaction, while the population of P. entomophila 23S maintained. The quantification of anti-Cmm compound indicated that P. entomophila 23S produced significantly higher amount of anti-Cmm compound when it was cultured with Cmm. Overall, the study suggested that P. entomophila 23S, although is cidal to Cmm, was also negatively affected by the presence of Cmm, while trying to adapt to the stress condition, and that such an environment favored increased production of the anti-Cmm compound by P. entomophila 23S. SignificancePseudomonas entomophila strain 23S is an effective biocontrol bacterium for tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm); it produces an inhibitory compound affecting the growth of Cmm. In this study, secreted proteome of pure cultures of P. entomophila 23S and Cmm, and also of a co-culture was first time identified. Furthermore, the study found that P. entomophila strain 23S produced significantly higher amount of anti-Cmm compound when the bacterium was grown together with Cmm. Co-culture enhancing anti-Cmm compound production by P. entomophila 23S is useful information, particularly from a commercial point of view of biocontrol application, and for scale-up of anti-Cmm compound production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call