Abstract
Both ethanol and silver ions have been shown to affect ion transport across various epithelia. This investigation was principally undertaken to further define mechanisms of silver ions and ethanol, and their possible interactions, on sodium transport across toad skin. Isolated toad skin, mounted between identical oxygenated amphibian bicarbonate Ringer solutions, maintained stable transepithelial potential differences (serosa positive) and short-circuit currents for several hours at 25 degrees C. It was observed that (1) ethanol inhibited the active transcellular component of sodium absorption and this effect was reversible; (2) inhibition of sodium transport by ethanol was directly proportional to the applied concentration; (3) pretreatment with silver ions prevented any ethanol effects; and (4) pretreatment with ethanol prevented any silver ion effects. It was concluded from these results that ethanol induced its inhibitory effects on membrane phospholipids thereby perturbing the function of a sulfhydryl ligand, while silver ion or silver chloride complex binding to this ligand would maintain its function in sodium transport despite the presence of ethanol.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have