Abstract

ObjectivesTo evaluate the interactions of two phosphate ester monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) and dipentaerythritol penta-acrylate phosphate (PENTA)] with hydroxyapatite and collagen and understand their influence on dentine bonding. MethodsFourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, nuclear magnetic resonance, ultraviolet-visible, and molecular docking were applied for separately evaluating the interactions of two monomers with hydroxyapatite and collagen. Hydrophilicity tests and morphological observation were employed to characterize pretreated dentine. Microtensile bond strength (μTBS) and nanoleakage were investigated to evaluate the bonding performance. Hydroxyproline assay, in situ zymography, and matrix metalloproteinase-9 (MMP-9) activity assay were used to confirm the MMP inhibition. ResultsChemoanalytic characterization confirmed the interactions of 10-MDP and PENTA with hydroxyapatite and collagen. The interactions of PENTA were weaker than 10-MDP. PENTA possessed better dentine tubule sealing after etching than 10-MDP. Dentine treated with PENTA was more hydrophilic than 10-MDP. 10-MDP and PENTA treating significantly increased the initial μTBS than the control group without primer conditioning. μTBS decreased significantly during aging, and the decrease was more severe in the PENTA group than 10-MDP. The 10-MDP and PENTA groups exhibited relatively less fluorescence than the control. The relative inhibition percentages of MMP-9 decreased in the order of 10-MDP–Ca salt, 10-MDP and PENTA. The 10-MDP, PENTA, and 10-MDP–Ca salt groups showed significantly lower hydroxyproline contents than the control. ConclusionsAlthough PENTA adsorbed on hydroxyapatite, it did not form a stable calcium salt. The interactions of 10-MDP with hydroxyapatite and collagen are different than those of PENTA. Clinical significanceThe sealing of dentinal tubules by PENTA and the inhibition of MMP by 10-MDP and its calcium salts contribute to improving the dentine bonding durability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.