Abstract
We have investigated the effect of base pairing on the electron attachment to nucleobases in bulk water, taking the guanine-cytosine (GC) base pair as a test case. The presence of the complementary base reinforces the stabilization effect provided by water and preferentially stabilizes the anion by hydrogen bonding. The electron attachment in bulk-solvated GC happens through a doorway mechanism, where the initial electron attached state is water bound, and it subsequently gets converted to a GC bound state. The additional electron in the final GC bound state is localized on the cytosine, similar to that in the gas phase. The transfer of the electron from the initial water-bound state to the final GC bound state happens due to the mixing of electronic and nuclear degrees of freedom and takes place at a picosecond time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.