Abstract

The effects of size and hydrophobicity of small (molecular weights below 2,000) polypeptides on their predominantly hydrophobic interactions with a neutral phospholipid monolayer were studied. The changes in surface pressure were determined when various concentrations of Gly, Gly-Gly-Gly, l-Ala, l-Ala- l-Ala- l-Ala, l-Ala-Gly-Gly-Gly-Gly, l-Phe- l-Leu- l-Glu- l-Glu- l-Leu, adrenocorticotropic hormone fragments 1–10 (ACTH-(1–10)), porcine β-lipotropin, α-endorphin and human fibrinopeptide A were injected under dimyristoylphosphatidylcholine (DMPC) monolayers at an initial surface pressure of 10 dyne/cm. In all cases, when peptides with the same number of residues are compared, the concentration needed to increase the surface pressure of the film by 1 dyne/cm was inversely related to its hydrophobicity. A reasonably good correlation was found to exist between the calculated free energy of transfer of a polypeptide from ethanol to water (a measure of its hydrophobicity) and its ability to increase the surface pressure of the DMPC film (a measure of the extent of its interaction with the neutral lipid monolayer).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.