Abstract

We present experimental and theoretical study of colloidal interactions in quadrupolar nematic liquid crystal colloids, confined to a thin planar nematic cell. Using the laser tweezers, the particles have been positioned in the vicinity of other colloidal particles and their interactions have been determined using particle tracking video microscopy. Several types of interactions have been analyzed: (i) quadrupolar pair interaction, (ii) the interaction of an isolated quadrupole with a quadrupolar chain, and (iii) the interaction of an isolated quadrupolar colloidal particle with a two-dimensional (2D) quadrupolar crystallite. In all cases, the interactions are of the order of several 100k(B)T for 2 microm particles, which gives rise to relatively stable 2D colloidal crystals. The experimental results are compared to the predictions of Landau-de Gennes theory and we find a relatively good qualitative agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.