Abstract

The theory of elastic interaction of micrometer-sized axially symmetric colloidal particles immersed into confined nematic liquid crystal has been proposed. General formulas are obtained for the self-energy of one colloidal particle and interaction energy between two particles in arbitrary confined nematic liquid crystals with strong anchoring condition on the bounding surfaces. Particular cases of dipole-dipole interaction in the homeotropic and planar nematic cell with thickness L are considered and found to be exponentially screened on far distances with decay length lambdadd=L/pi. It is predicted that bounding surfaces in the planar cell crucially change the attraction and repulsion zones of usual dipole-dipole interaction. As well it is predicted that the decay length in quadrupolar interaction is two times smaller than for the dipolar case in the homeotropic cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.