Abstract

Endogenous polyamines, in particular spermine, have been found to cause block and modulation of a number of types of ion channel. Intracellular spermine is responsible for intrinsic gating and rectification of strong inward rectifier K+ channels by directly plugging the ion channel pore. These K+ channels control the resting membrane potential in both excitable and non-excitable cells, and control the excitability threshold in neurons and muscle cells. Intracellular spermine causes inward rectification at some subtypes of Ca2+-permeable glutamate receptors in the central nervous system, again by plugging the receptor channel pore, and spermine can even permeate the ion channel of these receptors. Extracellular spermine has multiple effects at the N-methyl-d-aspartate (NMDA) subtype of glutamate receptor, including stimulation that increases the size of NMDA receptor currents, and voltage-dependent block. A number of polyamine-conjugated arthropod toxins and synthetic polyamine analogues are potent antagonists of glutamate receptors, and represent new tools with which to study these receptors. Interactions of polyamines with other types of cation channels have been reported. This area of research represents a new biology and a new pharmacology of polyamines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.