Abstract

Oligochitosan (OCHI) is known to have some specific biological activities. However, its interactions with blood components and related correlation with molecular structures remains to be clarified due to its growing use in biomedical areas. Herein, a series of OCHI were prepared by hydrogen peroxide induced degradation combined fractionation in ethanol solutions and their molecular structures were characterized by GPC, FTIR, 1H and 13C NMR, and then the interactions of the prepared OCHI with blood components, including red blood cells (hemolysis, deformability, and aggregation), coagulation system, complement (C3a, and C5a activation), and platelet (activation, and aggregation), were investigated. For red blood cells, OCHI has a quite low risk of hemolysis in a dose- and MW-dependent manner and the deformability and aggregation were observed in its high MW fraction. The coagulation tests revealed that OCHI is capable of a mild anticoagulation through blocking the intrinsic pathway and the anticoagulation corresponding MW was identified. In terms of complement, OCHI could inhibit C3a in a dose-dependent manner and activate C5a with its high MW fraction. In addition, there is no significant effect of OCHI on platelet activation and aggregation. Based on above results, the interactions related mechanism was discussed and proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.