Abstract

Chitosan oligosaccharide (COS) is known for its unique biological activities such as anti-tumor, anti-inflammatory, anti-oxidant, anti-bacterial activity, biological recognition, and immune enhancing effects, and thus continuous attracting many research interests in drug, food, cosmetics, biomaterials and tissue engineering fields. In comparison to its corresponding polymer, COS has much higher absorption profiles at the intestinal level, which results in permitting its quick access to the blood flow and potential contacting with blood components. However, the effects of COS on blood components remain unclear to date. Herein, two COS with different molecular weight (MW) were characterized by FTIR and 1H NMR, and then their effects on human blood components, including red blood cells (RBCs) (hemolysis, deformability, and aggregation), coagulation system [activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and the concentration of fibrinogen (Fib)], complement (C3a and C5a activation), and platelet (activation and aggregation), were comprehensively studied. In the case of RBCs, COS exhibited a low risk of hemolysis in a dose and molecular weight dependent manner and the irreversible aggregation was observed in their high concentration. For coagulation system, COS has a mild anticoagulation activity through blocking the intrinsic coagulation pathway. In addition, COS showed no effect on complement activation in C3a and C5a and on platelet activation while inhibition of platelet aggregation was evident. Finally, the mechanism that effects of COS on blood components was discussed and proposed.

Highlights

  • Chitosan oligosaccharide (COS) is an oligomer of chitosan with an average molecular weight (MW) < 5,000 Da, and its chemical structure, like chitosan, is a linear binary copolymer consisting of β-1, 4-linked 2-acetamido-2-deoxy-β-D-glucopyranose (GlcNAc) and 2-amino-2-deoxy-β-D-glucopyranose (GlcN) (Kumar et al, 2004; Muanprasat and Chatsudthipong, 2017)

  • It is well-known that oral administration of COS has much higher absorption profiles at the intestinal level than that of its corresponding polymer, chitosan, which results in permitting its quick access to the blood flow and potential contacting with blood components (Chae et al, 2005)

  • Fernandes et al studied the interactions of COS with human red blood cells (RBCs) and the results showed that no significant hemolysis was evident and the damage of COS on the RBCs was dependent on the concentration and MW of the used samples (Fernandes et al, 2008)

Read more

Summary

Introduction

Chitosan oligosaccharide (COS) is an oligomer of chitosan with an average molecular weight (MW) < 5,000 Da, and its chemical structure, like chitosan, is a linear binary copolymer consisting of β-1, 4-linked 2-acetamido-2-deoxy-β-D-glucopyranose (GlcNAc) and 2-amino-2-deoxy-β-D-glucopyranose (GlcN) (Kumar et al, 2004; Muanprasat and Chatsudthipong, 2017). The use of COS has been broadened in many research and applied areas, there are some dilemmas that need to be elucidated It is well-known that oral administration of COS has much higher absorption profiles at the intestinal level than that of its corresponding polymer, chitosan, which results in permitting its quick access to the blood flow and potential contacting with blood components (Chae et al, 2005). This is applicable to chitosan based tissue-engineering scaffolds, because the degraded fragments that mainly composed of COS would enter into the blood circulation. It can be expected that the hydroxyl groups along the molecular chains of COS probably have some specific effects on the blood components

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call