Abstract

The temperature dependence and acyl chain packing properties of the binary lipid mixtures of dipalmitoylphosphatidylcholine-d62 (DPPC-d62)/dipalmitoylphosphatidylglycerol (DPPG) multilayers, reconstituted with two synthetic peptides for modeling the membrane behavior of the SP-B protein associated with human pulmonary surfactant, were investigated by vibrational Raman spectroscopy. The synthetic peptides consisted of 21 amino acid residues representing repeating charged units of either lysine or aspartic acid separated by hydrophobic domains consisting of four leucines (KL4 or DL4, respectively). These peptides were designed to mimic the alternating hydrophobic and hydrophilic sequences defining the low molecular weight SP-B protein. Raman spectroscopic parameters consisting of integrated band intensities, line widths, and relative peak height intensity ratios were used to probe the bilayer order/disorder characteristics of the liposomal perturbations reflected by the reconstituted membrane assemblies. Temperature profiles derived from the various Raman intensity parameters for the 3100-2800-cm-1 carbon-hydrogen (C-H) and the 2000-2300-cm-1 carbon-deuterium (C-D) stretching mode regions, spectral intervals representative of acyl chain vibrations, reflected lipid reorganizations specific to peptide interactions with either the DPPC-d62 or DPPG component of the liposome. For the multilamellar surfactant systems composed of either KL4 or DL4 reconstituted with the binary DPPG/DPPC-d62 lipid mixture, the breadth of the gel to liquid crystalline phase transition temperatures TM, defined by acyl chain C-H and C-D stretching mode order/disorder parameters, increased from about 1 degree C in the peptide-free systems to over 10 degrees C. This breadth in TM indicates an increased lipid disorder and a distinct noncooperative chain melting process for the model liposomes. In comparing the interactions of the synthetic peptides with DPPG/DPPC mixtures and with DPPC liposomes alone, the negatively charged DL4 peptide perturbs the DPPG component of the lipid mixture more strongly than the DPPC-d62 component; moreover, the DL4 peptide disrupts the structure of the DPPG lipid domains in the binary mixture to a greater extent than the KL4 peptide. The microdomain heterogeneity of the binary lipid mixture arising from lipid-peptide interactions is discussed in terms of the Raman spectral properties of the multilayers. The Raman data in conjunction with previous bubble surfactometer and animal studies (Cochrane & Revak, 1991) suggest that lipid domain structures are present in functional surfactants and that the dynamic bilayer microheterogeneity induced by the surfactant peptide or protein is essential for pulmonary mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.