Abstract

Diamond-like carbon (DLC) coatings produced using the plasma-accelerating filtered pulsed arc discharge (FPAD) method display excellent adherence to the substrate and improve its corrosion resistance. This article reports the interactions of human osteoblastic cells with DLC and two DLC polymer hybrid (DLC-p-h) coatings deposited on smooth, matt and rough silicon wafers by the FPAD method. The DLC-p-h materials were DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) and DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) coatings. The biocompatibility of the coatings was assayed by using mesenchymal stem cells, primary osteoblasts and Saos-2 cells. Human mesenchymal stem cells proliferated when cultured on DLC and DLC-PTFE-h, but their numbers diminished on DLC-PDMS-h. In all three cell types studied, phalloidin-TRITC staining disclosed cell-type organization typical of an actin cytoskeleton on DLC and DLC-PTFE-h, but minimal and disorganized stress fibers on cells cultured on DLC-PDMS-h. The microtubular cytoskeleton was similarly disorganized on DLC-PDMS-h. Cells on DLC-PDMS-h developed a peculiar form of membrane damage, with nuclear staining by propidium iodide associated with granular calcein staining of the cytoplasm. Active caspase-3 labeling was only seen in cells cultured on DLC-PDMS-h, indicating that these cells undergo apoptosis induced by defective cell adhesion. Results suggest that DLC-PDMS-h coatings might be useful in orthopedic applications where an implant or implant-facet should be protected against bone overgrowth while DLC and DLC-PTFE-h coatings might improve osseointegration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.